Inhibiting insulin resistance mechanisms by DTS phytocompound: an experimental study on metabolic syndrome-prone adipocytes

Catanzaro R, Lorenzetti A, Allegri F, Yadav H, Solimene U, Kumaraju AK, Minelli E, Tomella C, Polimeni A, Marotta F.
Dept. of Internal Medicine, University of Catania, Catania, Italy.

The present study was designed to determine whether DTS a phytocompound endowed with antioxidant properties, could beneficially modulate nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-alpha) in adipocytes. Combined stimulation (CS-treatment) exerted by using 5 microg/ml of LPS together with 100 ng/ml of TNF-alpha significantly enhanced NO production in 3T3-L1 adipocytes. Preincubation of the adipocytes with DTS (10-30 mM) inhibited such phenomenon in a dose-dependent fashion. The production of NO was decreased by 52% at the concentration of 30mM of DTS. The decrease in NO production by DTS was associated also with a decrease in inducible nitric oxide synthase (iNOS) protein and iNOS mRNA expression. Nuclear factor-kappa B (NF-kappaB) was significantly enhanced by CS-treatment, while the pretreatment with 30 mM of DTS prevented the activity by 27%. IL-6 production in 3T3-L1 adipocytes was markedly increased by CS stimulus, and the enhanced secretion of IL-6 was suppressed in a dose-dependent manner by DTS. These results suggest that DTS regulates iNOS expression and NO production in adipocytes through the modulating activation of NF-kappaB and may have a potential clinical application within protocols designed for treating metabolic syndrome. (